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Abstract 

Planck’s theory of blackbody radiation giving the dispersion of photons with temperature has served 

well in the radiative heat transfer between surfaces at the macroscale. However, near-field 

enhancement based on Maxwell’s equations is questionable because temperature fluctuations in the 

surfaces of nanoscale gaps as required by the fluctuation-dissipation theorem are precluded by 

quantum mechanics. Instead, near-field heat transfer proceeds by the creation of photons from the 

thermal energy of surface atoms by quantum electrodynamics allowing Planck theory to remain valid 

at the nanoscale. Similarities of near-field heat transfer with the Hartman effect and the thermal 

Casimir force are presented.  
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1. Introduction 

Planck’s theory [1] of BB radiation giving the dispersion of the EM emission of photons with 

temperature and wavelength (or frequency) provided the basis for QM. BB stands for blackbody, EM 

for electromagnetic, and QM for quantum mechanics.  At the macroscale, Planck’s theory has served 

well in radiative heat transfer provided the gap or separation between heat transfer surfaces is large 

compared to the wavelength of the photon emission. 

Recently, Planck theory is claimed [2] to set an upper limit on radiative heat transfer. But Planck 

never stated his theory bounded near-field heat transfer, although he was surely aware bringing BBs 

close together does not increase their thermal energy. Today, tunneling through nanoscale gaps by 

evanescent waves is thought [2,3] to enhance of heat transfer by 3-4 orders of magnitude above the 

BB limit given by Planck theory. However, difficulty in experiments limits supporting data to micron 

and not nanoscale gaps, and therefore claims of near-field enhancement by evanescent waves rely 

almost entirely on classical EM wave analysis by the Maxwell equations. 

 

2. Purpose 

 

The support of near-field radiative heat transfer by evanescent waves by solutions of Maxwell’s 

equations is questioned because the FDT may not be satisfied for atoms in the gap surfaces. FDT 

stands for fluctuation dissipation theorem. Instead of evanescent waves, near-field heat transfer is 

proposed to proceed by QED induced tunneling. QED stands for quantum electrodynamics.  

 

3. Background 

Planck’s theory of BB radiation giving the dispersion of EM radiation emitted from the atom 

depending on temperature and EM confinement not only provided the basis for QM but also allowed 

the derivation of the Stefan-Boltzmann (SB) equation  for radiative power QSB, 
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where,  is the SB constant, A the surface area, TH and TC the absolute temperatures of hot and cold 

surfaces. 



Historically, the FDT in heat transfer [4] relates the random movement of dipoles in the Maxwell 

equations to the temperature of the material. Today, the FDT is implicitly assumed satisfied [5-7] at 

the nanoscale to justify the application of classical EM wave theory to near-field heat transfer by NIR 

evanescent surface waves. The temperatures of atoms in the hot and cold gap surfaces are assumed to 

fluctuate, even though the surface atoms under EM confinement are precluded by QM from having 

the heat capacity necessary to support temperature fluctuations. Nevertheless by assuming the FDT is 

satisfied, Maxwell solutions [3-7] show the near-field heat flux to vary inversely with the square of 

the gap d dimension, e.g., the Maxwell heat flux Q (Eqn. 23a of [6]). 
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where,   ( ,T) is the frequency form of the Einstein-Hopf relation and   is the angular frequency,    

= 2 c/. The imaginary parts of the complex permittivity  H and  C of the hot and cold surfaces are 

designated by Im.    

But all did not agree. The argument [8] was made that as the gap vanishes, the heat flux diverges, 

and therefore BB power is not conserved. The counter argument [9] claimed divergence of the flux 

does not occur because once thermal contact is established the radiative resistance tends to zero, and 

therefore the heat flux must be finite as there no longer is any temperature difference. However, as a 

near-field theory, heat transfer by evanescent waves is based on a gap without thermal contact, and 

therefore the temperature difference is required to remain constant as the gap vanishes, thereby 

supporting the argument [8] that power conservation is indeed violated. Only if the heat flux does not 

diverge as the gap vanishes do evanescent waves provide a valid description of nanoscale radiative 

heat transfer.  

In this regard, a second counter argument [9] against divergence in evanescence theory depends 

on whether the materials are lossy or nonlossy. For lossy materials, the heat flux does indeed increase 

by the 1/d
2
 relation, but between nonlossy materials, the heat transfer is bounded. The fact that the 

divergence clearly is not borne out by the actual physics [10] is of no consolation to the divergence 

the heat flux as a theory of evanescent waves in the near-field heat transfer of lossy materials. 

However, the QM restriction on the FDT may be a more serious objection than divergence to the 

validity of Maxwell’s solutions of evanescent waves in near-field heat transfer. Unlike classical 

physics, QM rejects the notion atoms in the surfaces of nanoscale gaps have the heat capacity to allow 

temperatures to fluctuate and satisfy the FDT. The effect of QM on the Maxwell heat flux Q may be 

assessed from (1) by taking both  ( ,TH) and  ( ,TC) to vanish. If so, Q also vanishes independent 

of whether the materials are lossy or have imaginary permittivity. Effectively, QM negates the NIR 

evanescent frequencies having  ( ,TH) > 0 allowing only high frequency waves having vanishing 

 ( ,T) in nanoscale gaps.  

On the other hand, the Maxwell’s equations follow classical physics and permit the surface atoms 

to fluctuate in temperature consistent [7] with the mainstream assumption for deriving the evanescent 

heat flux Q between BB surfaces. To illustrate the differences between QM and classical physics, 

consider the Maxwell solution for between surfaces at 800 and 200 K given by the heat flux q ,12
Net

 

shown in (Fig. 1a of [7]) and reproduced in Fig. 1. 

  



 

Fig. 1 Maxwell Solutions for Evanescent Waves between Surface Temperatures 800 and 200 K  

The Maxwell solutions for gaps d = 100 and 10 nm gaps give peak heat fluxes q ,12
Net

 = 5x10
-10

 

and 10
-9

 W/m
2
/rad/s at angular frequency   = 3x10

14
 rad/s as shown in Fig. 1. At this frequency, the 

evanescent wave is in the NIR having wavelength  = 6.28 microns. The BB radiation flux qBB, 
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is plotted in Fig. 1. At   = 3x10
14

 rad/s, qBB = 4.8x10
-11

 W/m
2
/rad/s.  Clearly, Maxwell solutions 

assuming NIR evanescent tunneling at   = 3x10
14

 rad/s show heat flux is enhanced in nanoscale gaps 

by factors of 10 to 20 over BB radiation. 

The problem is the atoms in the surfaces of the 100 and 10 nm gaps under EM confinement are 

precluded by QM from the temperature fluctuations necessary to satisfy the FDT.  The effects of EM 

confinement of surface atoms in nanoscale gaps may be assessed by comparing the Maxwell solutions 

for gaps d < 1 micron with that in the NIR at    = 3x10
14

 rad/s. For d < 1 micron having angular 

frequency   > 2x10
15

 rad/s, the Maxwell heat fluxes < 10
-13

 W/m
2
/rad/s are far less than qBB for the 

peak BB heat flux in NIR tunneling. On this basis, the Maxwell solutions for nanoscale gaps may not 

be valid to support the claim that evanescent tunneling enhances near-field heat flux above that of BB 

radiation.  

In the following, the QED alternative to evanescent tunneling in near–field radiative heat transfer 

is presented for consideration and review.  

 

4. QED Theory 

 

Divergence of near-field heat flux by evanescent waves (2) may be traced to the FDT that 

inherently assumes [4-7] gap surfaces undergo temperature fluctuations when in fact QM precludes 

temperature fluctuations in surface atoms because of EM confinement. What this means is divergence 

in evanescent theory may very well be an artifact of the invalid assumption of the FDT being satisfied 

in the solution of Maxwell’s equations, and if so, there is no enhancement above the BB limit. But if 

so, what is the mechanism that allows the SB equation to be valid in the near-field?  

In this paper, standing QED photons are proposed as the mechanism by which the SB radiation 

tunnels across the gap. The SB equation is otherwise not modified thereby maintaining the validity of 

Planck theory in the near-field. The QED photons standing between hot TH and cold TC surfaces while 

tunneling SB power across the gap d is depicted in Fig. 2.   



 
Fig. 2 QED Tunneling by Standing Wave Photons 

 

The QED photon having wavelength  = 2(d+2 ) is depicted to penetrate distance   into the atoms 

of the gap surfaces. For   << d,  = 2d.   

 

4.1 QM Restrictions 

The QM restrictions on the thermal kT energy of the surface atoms depends on the EM 

confinement given by the Einstein-Hopf relation [11] for the average Planck energy E of the atom as a 

harmonic oscillator shown in Fig. 3. 

 

 
Fig. 3 Atom as a Harmonic Oscillator at 300 K 

In the inset: h is Planck’s constant, c the speed of light, k Boltzmann’s constant,                                 

and T absolute temperature. 

 

Classical physics depicted as the horizontal line allows the atom to have kT energy or heat 

capacity at the nanoscale. QM differs by allowing the atom to only have kT energy for  > 40 microns. 

What this means in radiative heat transfer is the atoms in the gap surfaces have bulk temperatures only 

if the gaps d > /2 = 20 microns. However, this is an upper bound as the heat capacity decreases for d 

< 20 microns.  Fig. 3 shows at   < 6 microns, the kT energy of the atom is more than 2 orders of 

magnitude lower than kT. At the nanoscale d < 1 micron, the heat capacity of the atom for all intent 

and purpose may be assumed to vanish.  Lacking heat capacity, atoms in gap surfaces cannot change 

in temperature under radiative heat transfer. Unlike classical physics, QM precludes the atom from 

conserving absorbed EM energy at the nanoscale by an increase in temperature.  
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4.2 EM Confinement 

The QED creation of photons in nanoscale gaps requires complex mathematics [12] that is beyond 

the scope of this paper. However, the QED physical process is simple to understand. Simply put, QED 

induces the creation of photons having wavelength  anytime EM energy is supplied to a QM box 

with walls separated by /2. For the gap d in near-field heat transfer, the frequency f, wavelength , 

and Planck energy E are, 
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4.3 QM and the SB Equation  

QM given by the Einstein-Hopf relation limits the heat capacity of the atom depending on 

temperature T and the wavelength  of EM confinement. It is generally accepted [13] that the heat 

capacity of the atom may be made to vanish by lowering the temperature T to absolute zero.  However, 

cryogenic temperatures are not necessary. Indeed, at ambient temperature, the heat capacity also 

vanishes if the atom is placed under EM confinement as in the surfaces of nanoscale gaps in near-field 

heat transfer.  

In the Einstein-Hopf description of QM, surface atoms in gaps d are by definition under EM 

confinement at wavelength   = 2d, the consequence of which is the kT energy of surface atoms in 

gaps < 3 microns is decreased more than 2 orders of magnitude. At nanoscale gaps d < 1 micron, it 

can safely be concluded the heat capacity of surface atoms vanishes. 

What this means is QM requires surface atoms at ambient temperture to only have thermal kT 

energy at gaps d > 20 microns. For gaps d < 20 microns, the surface atoms have thermal energy < kT, 

although the change is gradual. On this basis, conservatively assume the bulk temperatures TH and TC 

extend down to and abruptly change at gap D, say D =  3 microns. QED photons at gaps d and D are 

shown standing between surface atoms of large circles and the dead space ds denoted by a region of 

small white circles in Fig. 4.   

 
Fig. 4 QM and the SB Equation 

 

The region d < D microns is comprised of the vacuum gap d and dead space 2ds both of which lack 

heat capacity, the latter being the consequence of QM. Lacking heat capacity, thermal conduction is 

negated as temperatures do not change in the dead spaces, i.e., temperatures in dead space ds adjacent 

TH remain at TH  and those adjacent TC remain at TC. However, SB radiation may readily pass through 

the vacuum and dead spaces. In effect, the lack of heat capacity in the dead spaces ds increases the 

vacuum gap from d to d + 2ds but otherwise the SB power remains the same.  What this means is the 

SB equation (1) gives the same power for all gaps d < D,  
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4.4 Conservation of Energy 

Irrespective of the gap d < D microns, the SB power absorbed by the atoms cannot be conserved 

by an increase in the temperature. Instead, the SB power is conserved by QED creating standing wave 

photons in the gap d having Planck energy E = hc/2d. Single QED photons therefore transfer power q 

by moving EM energy E of the photon across the gap d at the rate c/2d, i.e., the QED photon transfers 

q = h(c/2d)
2
. To conserve the SB power, the number density NP / A of QED photons created,  
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The Planck energy E and number density Np / A of QED photons are shown in Fig. 5. 

 

 
Fig. 5 QED Photon Energy and Number Density 

 

5. Discussion 

 

5.1 Maxwell Equations and QM 

5.1.1 Background 

Maxwell’s equations provide solutions of EM fields, but in radiative heat transfer a relation 

between the fields and temperature is required. Traditionally, the FDT satisfies [4-7] this requirement 

by relating the oscillations of dipoles to thermal fluctuations, the frequencies of which are given in the 

QM of Planck’s theory by Einstein-Hopf.  

In near-field radiative heat transfer across nanoscale gaps, Einstein-Hopf is indeed included in the 

solutions [2-3,6-7] of Maxwell’s equations. Consistent with NIR evanescent wave moving parallel to 

a free surface, the atom is not under any EM confinement having full kT energy at wavelengths  > 

40 microns as shown in Fig. 3. However, in a nanoscale gap, the NIR wave normal to the surface is 

under EM confinement, and therefore the surface atoms are precluded from the heat capacity to 

produce the temperature fluctuations necessary to satisfy the FDT.  Indeed, atoms under EM 

confinement in nanoscale gaps have virtually no heat capacity compared to the NIR to allow 

temperatures to fluctuate as required by the FDT.  

 

5.1.2 QED Induced Radiation 

Near-field heat transfer derived [2] with Maxwell’s equations in comparison to the BB limit (Fig. 

1 of [2]) is reproduced in Fig. 6. The Maxwell solutions are observed to exceed the BB limit at d < 3 

microns and give 3-4 orders of magnitude higher heat transfer at 10 nm. In contrast, QED induced 

heat transfer (4) remains at the BB limit for all d < D microns, where D is about 3 microns. 
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Fig. 6 Near-field and QED induced Heat Transfer 

  

What this means is Planck’s theory does indeed limit near-field radiative heat transfer contrary to 

claims [2] otherwise. QM restrictions on the FDT are recommended in solutions of Maxwell’s 

equations of nanostructures.     

 

5.2 Evanescent Waves and QED Tunneling in Double Prisms 

5.2.1 Background 

Evanescent wave and QED tunneling in near-field radiative heat transfer find similarity with the 

tunneling of light between double prisms. It is instructive therefore to view tunneling of BB radiation 

in the near-field from the broader perspective of tunneling of light.  

For over 50 years, the Hartman effect [14] has suggested superluminal velocities may be found in 

the gap between double prisms. When the prisms are in contact, the light passes straight through, but 

when there is a gap, the light may either tunnel across or follow the refracted path. Since the time for 

light to travel across large gaps is found to be the same as for short gaps, the Hartman effect has been 

interpreted to suggest photons have crossed the gap with superluminal velocity. 

In QM tunneling, the Schrodinger equation is used to determine the probability of a particle of 

energy E incident on a potential barrier V to pass through the barrier, where E < V. In classical 

physics, the particle is totally reflected by the barrier. However, QM differs in that there is a finite, 

although small, probability that the particle will tunnel through the barrier. However, QED tunneling 

used to explain near-field heat transfer may also explain the Hartman effect without invoking the 

Schrodinger equation.   

In this regard, Winful [15] argued non-propagating evanescent waves are virtual photons that do 

not propagate into the outside world. Since the velocity of non-propagating waves is meaningless, the 

light in the Hartman effect cannot travel at superluminal velocities, but rather only be delayed. 

However, if the delay time is interpreted as a transit time then the Hartman effect naturally leads to 

the conclusion that superluminal velocities occur in double prisms.  

On the other hand, if the delay in tunneling is the time for accumulating incident photon energy 

until the barrier can be breached, the Hartman effect may be explained [15] by the saturation of 

incident photon energy in the barrier. The delay is then the time for the flux of incident photons to 

saturate before the barrier is breached. Because of this, the Hartman effect may be explained by the 

saturation of accumulated energy without the need for superluminal velocities.  

Regardless, Winful’s argument of the time delay for stored energy of evanescent waves necessary 

to breach the barrier alone is insufficient. Non-propagating evanescent waves cannot propagate 

irrespective of whether the accumulated energy can breach the barrier. What this means is tunneling 

of photons through the double prism gap occurs by a more fundamental mechanism that creates real 

photons from accumulated energy that are indeed capable of propagating to the outside world. 



Evanescent waves are not this mechanism, but rather are only a way of supplying EM energy of 

incident photons to the gap. 

 

5.2.2 QED Tunneling  

Similar to QED induced radiative heat transfer; QED provides a way of creating photons from the 

accumulated EM energy of evanescent waves in the gap. Like QED induced heat transfer, the double 

prism having resonant wavelength 2d corresponds to a barrier having Planck energy EB = hc/2d. Since 

the single incident photon with wavelength  has Planck energy E = hc/, and since E < EB, the 

incident photon cannot breach the barrier. However, the absorbed EM energy from a number N of 

incident photons accumulates in the QED cavity until the barrier is breached. At saturation, the 

number N of incident photons, N = EB /E = /2d > 1.  

QED tunneling by the creation of propagating QED photons supports Winful’s interpretation of 

the Hartman effect by the saturation time of stored incident photon energy in the barrier. Unlike 

evanescent photons that cannot propagate across the gap, the QED photons not only propagate across 

the gap, but travel beyond into the outside world.  Assuming the Planck energy E of a single incident 

photon is localized in the QED cavity in time 2d/c, the time t* to create a QED photon from N 

incident photons is, t* = 2Nd/c = /c.  Consistent with the Hartman effect, the time t* therefore tends 

to a constant independent of the gap d while depending only on the wavelength  of the incident 

photons. However, for  < 2d, there is no QED cavity effect with the incident photons localizing in 

the gap in their natural time, t* = /c. 

Verification of QED tunneling in a double prism may be found in experiments [16] using 

microwave photons having wavelength  = 32.8 mm. The Goos-Hanchen (GH) shift reproduced from 

(Fig. 4 of [17]) is shown in Fig. 7. 

 
Fig. 7 GH plot of saturation in QED Tunneling through Double Prisms 

Legend: 60 mm (thin), 80 mm (dashed), and 120 mm (thick) 

  

 GH saturation is reasonably bracketed by QED theory. Fig. 7 shows saturation to occur in air 

gaps d from 15 to 17 mm for the 60 and 80 mm diameter beams. Setting aside the anomalous data 

point at d ~ 15 mm for the120 mm beam, QED theory  for the 60 and 80 mm beam diameters gives, 

0.96 < N < 1.09.  

QED conversion of EM energy from non-propagating evanescent waves to propagating photons 

that can interact with the outside world need not be limited to the Hartman effect.  In this regard, BB 

thermal radiation is thought to transmit radiation across nanoscale gaps d <<   by evanescent waves. 

Unlike incident photons from an external laser in the double prism, atoms in the surfaces of nanoscale 

gaps are physically part of the QED cavity, and therefore the surface atoms naturally supply the EM 

energy needed by QED to create standing wave photons that transfer radiation across the gap. Indeed, 



QED tunneling in micron gaps may provide a more practical solution in near-field radiative heat 

transfer than the nanoscale gaps required for evanescent tunneling, e.g., thermal photovoltaic cells 

having peak efficiency at wavelength  > 1 micron may be tuned  by selecting  gaps d =  /2 instead 

of nanoscale gaps required by evanescent waves.  

 

5.3 Thermal Casimir 

5.3.1 Background 

In 1948, Casimir by extending the ZPE of QM to the field derived the force between neutral 

plates separated by a gap. ZPE stands for zero point energy. For flat plates sometimes called perfect 

mirrors, the ZPE force varies with 1/d
4
. Recently, the thermal Casimir force at ambient temperature 

was claimed [18] observed for the first time at Yale. With a pendulum with contact made between a 

sphere and flat plate, the thermal Casmir or ZPE forces are required to vary by 1/d
3  

and not 1/d
4
.  It is 

important to note the thermal Casimir force only depends on temperature and otherwise is 

independent of the ZPE.    

Only later in 1955 did Lifshitz [19] predict the existence of the thermal Casimir force. Like 

Casimir, Lifshitz only considered the force between neutral plates. The thermal Casimir forces 

derived with Lifshitz theory are the Drude and Plasma models having different dielectric properties 

for the plate materials, the correctness [20] of which is controversial. Regardless, the Yale experiment 

showed significant electrostatic forces that had to be removed to obtain what was thought to be the 

neutral thermal Casimir force. To compensate the unwanted electrostatic forces, a servo-controlled 

minimizing potential was used during force measurements.  

For large gaps, the thermal Casimir force was found to decrease by 1/d
2
. However, for small gaps, 

the expected 1/d
3 
force for point to flat contact was not observed. Instead, the force decreased by 1/d

4
 

suggesting the affirmation of ZPE Casimir force for perfect mirrors. In large gaps, the ZPE Casimir 

force is far smaller than the thermal Casimir force, and therefore the higher than expected measured 

force was therefore interpreted as the thermal - not the ZPE Casmir force. 

Lifshitz theory for the thermal Casimir force does not predict the charging of neutral surfaces 

separated from each other by gaps. Similarly, charging of neutral plates is not predicted in Casimir’s 

theory of the ZPE Casimir force. Since 1948, however, Casimir experiments including MEMS and 

semiconductors in photolithography unequivocally show charge is created upon bringing otherwise 

neutral surfaces close to each other. 

Subsequent to the Yale experiment, the thermal Casimir force was measured [21] at 4.2 K in the 

Grenoble experiment. The AFM tests showed Lifshitz theory to predict 50% lower thermal Casimir 

force than measured. AFM stands for atomic force microscope. Like the Yale experiment at ambient 

temperature, significant charge was created that is not included in Lifshitz theory. Regardless, absent 

a theory that predicts charge creation in submicron gaps between neutral surfaces, the 50% 

discrepancy between Lifshitz theory and experiment cannot be explained.  

 

5.3.2 QED Induced Electrostatic Force   

The QED induced electrostatic force is proposed to explain both the ZPE and thermal Casimir 

force in the Yale and Grenoble experiments. The QED force like Lifshitz theory has a thermal origin, 

but differs in that it is based on the thermal kT energy of atoms in the gap surfaces. Although both 

surfaces are at the same temperature, the mechanism of QED photon creation is the same for QED 

induced heat transfer in the near –field depicted in Fig. 2.   

 

 

 



Like QED induced heat transfer in the near-field, the QED force is the consequence of inducing 

the thermal kT energy of atoms in the plate surfaces to create photons that charge the plates by the 

photoelectric effect. Since the QED photons in the ZPE and thermal Casimir force have Planck energy 

E = hc/2d, and since the quantum yield of the gold contact surfaces requires QED photons having E > 

5 eV, charging may only occur for gaps d < 0.2 microns.  

In correcting for the unwanted electrostatic forces, both Yale and Grenoble experiments used a 

servo to impose a voltage to minimize the potential across the gap during force measurements. In this 

way, it was thought removal of the electrostatic force would leave the neutral thermal Casimir force 

alone to be measured. However, the QED photons created at gaps d < 0.2 microns have high Planck 

energy leaving residual charges trapped beneath the surface that cannot easily be removed by 

minimizing potentials of a few 100 mV.  

In the Grenoble experiment, the QED force for Au-Au surfaces measured at 4.2 K is shown in Fig. 

8. The data depicted as a dashed red line is coincident with the QED force but is displaced downward 

for clarity. The colors are shown on-line. The classical electrostatic 1/d
2
 force is shown as a green 

solid curve. The QED force is coincident with the 1/d
4
 curve for d < 600 nm, but for clarity is only 

shown for d > 700 nm as a solid red line. At large gaps d > 700 nm, the QED force produced under 

servo-control is higher than the classical electrostatics force. Hence, what is thought to be the thermal 

Casimir force is actually the QED force   

  

 
Fig. 8 Thermal Casimir and QED induced Electrostatic Force 

 

The Yale experiment at 300 K is similar to the Grenoble experiment at 4.2 K in that the unwanted 

electrostatic forces are compensated by servo-control of the minimizing potential. At small gaps, the 

force varied as 1/d
4
 instead of the expected 1/d

3
; whereas, the 1/d

2
 variation was observed in large 

gaps. What was thought to be the thermal Casimir force is in fact the QED force. The controversy 

whether the Drude or Plasma force is the correct thermal Casimir force is resolved – neither 

is.  Neither Lifshitz nor Casimir theories can explain the observed force behavior. Lifshitz theory that 

does ot predict charge in otherwise neutral surfaces is simply not applicable to the derivation of the 

thermal Casimir force. 

In this regard, near-field radiative heat transfer should be expected to produce charge in nanoscale 

gaps and induce electrical breakdown. Charge is of significance in ZPE and thermal Casimir force 

experiments and because of the similarity with QED tunneling should be no different in heat transfer 

at the nanoscale. Indeed, damage to nanoscale gap surfaces from electrical discharge may very well be 

the Achilles heel that limits the practical application of evanescent waves as a heat transfer 

mechanism in near-field heat transfer.     
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6. Summary and Conclusions 

 

In near-field radiative heat transfer, QED induced tunneling is proposed as an alternative to the 

mechanism of tunneling by NIR evanescent waves. 

 

The QED photons are created as the consequence of the EM confinement of the atoms in surfaces 

of nanoscale gaps that by QM are precluded from having the heat capacity necessary to conserve 

absorbed heat by an increase in temperature. Instead, conservation proceeds by the QED induced 

creation of standing photons at the EM confinement wavelength equal to twice the gap dimension. 

Unlike tunneling by NIR evanescent waves, the QED photons tunnel SB power across the gap, 

although not exceeding the BB limit consistent with Planck theory.  

 

The FDT that relates the strength of the oscillations of the dipoles inside a body to temperature 

fluctuations cannot be a priori assumed at the nanoscale.  QM precludes atoms in the gap surfaces 

from having the heat capacity necessary to allow temperature fluctuations as required by the FDT to 

provide valid solutions of Maxwell’s equations. 

 

Solutions of Maxwell’s equations in near-field heat flux by evanescent waves showing the BB 

limit is exceeded are most likely invalid by QM. Maxwell’s equations that assume the atom always 

has heat capacity at the macroscale are simply not valid at the nanoscale. 

 

Given that the thermal energy of a body is not increased by bringing it close to another body, 

near–field enhancement by tunneling of evanescent waves may not be realized in practice. In the 

alternative, QED induced tunneling allows the SB equation to describe the near-field heat transfer 

consistent with the BB limit defined by Planck theory. 

 

Although QED tunneling does not increase radiative heat transfer beyond the BB limit, the 

frequency of EM radiation in the gap may be tuned by selecting the gap to be the half-wavelength of 

the desired radiation.  In photovoltaic devices, the BB radiation of any wavelength may be tuned to 

the wavelength of the peak photocell sensitivity by proper selection of the gap not possible with 

evanescent waves.  

 

Similarity of QED induced heat transfer in the near-field is found with the Hartman effect and the 

thermal Casimir force both of which convert EM energy in nanoscale gaps to QED photons. In the 

Hartman effect, the EM energy of evanescent waves is converted by QED to real photons that can be 

transmitted to the outside world; whereas, in Casimir forces, the electrostatic attraction between metal 

plates is produced from the QED conversion of the thermal energy of surface atoms to photons that 

charge the plates by the photoelectric effect.  Damage of surfaces found in Casimir experiments 

should by similarity be considered in the design-life of near-field heat transfer prototypes. 
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