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Thermodynamics and quantum corrections from molecular 
dynamics for liquid water 

Peter H. Berens, Donald H. J. Mackay, Gary M. White, and Kent R. Wilson 

Department of Chemistry. University of California-San Diego, La Jolla, California 92093 
(Received 18 October 1982; accepted 19 May 1983) 

In principle, given the potential energy function, the values of thermodynamic variables can be computed 
from statistical mechanics for a system of molecules. In practice for the liquid state, however, two barriers 
must be overcome. This paper treats the first problem, how to quantum correct the classical mechanical 
thermodynamic values available from molecular dynamics, Monte Carlo, perturbation, or integral methods in 
order to compare with experimental quantum reality. A subsequent paper will focus on the second difficulty, 
the effective computation of free energy and entropy. A simple technique, derived from spectral analysis of 
the atomic velocity time histories, is presented here for the frequency domain quantum correction of classical 
thermodynamic values. This technique is based on the approximation that potential anharmonicities mainly 
affect the lower frequencies in the velocity spectrum where the system behaves essentially classically, while 
the higher spectral frequencies, where the deviation from classical mechanics is most pronounced, involve 
sufficiently harmonic atomic motions that harmonic quantum corrections apply. Thus, a harmonic quantum 
correction can be applied at all frequencies: at low frequencies where it is inaccurate it will be small, while at 
high frequencies where it is large it will also be relatively accurate. The approach is demonstrated by 
computation of the energy and constant volume heat capacity for water from classical molecular dynamics 
followed by quantum correction. The potential used to describe the interactions of the system of water 
molecules includes internal vibrational degrees of freedom and thus strong quantum effects. Comparison of 
the quantum corrected theoretical values with experimental measurements shows good agreement. The 
quantum corrections to classical thermodynamics (which are also derived for free energy and entropy) are 
shown to be important not only for internal vibrational motion, but also for intermolecular hindered 
rotational and translational motions in liquid water. They are presumably also important for other strongly 
associated molecules, including bimolecules, and thus should be included when comparing calculated and 
measured thermodynamic quantities. The approach illustrated here allows the calculation of thermodynamic 
quantum corrections for liquids, solutions, and large molecules such as polymers (including proteins and 
nucleic acids) with full inclusion of both intra- and intermolecular degrees offreedom. 

I. INTRODUCTION 

In principle from the potential energy as a function of 
nuclear positions one can compute from statistical me­
chanics the values of the thermodynamic variables. In 
practice this has been a difficult task for liquids and 
larger molecules such as proteins and nucleic acids. 
Two substantial barriers need to be overcome. The 
first, which is the subject of this paper, is how to com­
pute quantum thermodynamic reality when only classical 
mechanics is practically available as a computational 
tool. That quantum mechanics is essential in treating 
intramolecular vibrations is universally acknowledged, 
but it has sometimes been less well appreCiated that in­
termolecular motions in strongly associated liquids like 
water also show important quantum effects. Quantum 
corrections should thus be considered for strongly inter­
acting molecules in general, even for molecules ap­
proximated as rigid bodies, and forbiomolecules. The 
second barrier which is the subject of a paper to fol­
lOW, is how to practically compute the useful, but in­
trinSically difficult, free energy and entropy. 

is directly linked to both claSSical and quantum me­
chanical thermodynamic parameters, as it then repre­
sents the density of normal mode harmonic oscillators 
as a function of frequency. Two suppositions are used 

The present paper illustrates a simple molecular dy­
namics technique for quantum correcting classical 
thermodynamic quantities, e. g., those derived from 
molecular dynamics, Monte Carlo, perturbation, or 
integral methods. This approach makes use of the ve­
locity spectrum (often called the velocity autocorrela­
tion spectrum). For harmonic systems the spectrum 

to justify a harmonic approach to estimating the thermo­
dynamic quantum corrections: (i) that anharmonicities 
mainly affect the low frequency motions which are near­
ly claSSical, and (ii) that high frequency motions, where 
quantum effects are more important, are nearly har­
monic. With these assumptions the quantum corrections 
for a thermodynamic variable can be evaluated simply 
from the integral over frequency of a universal weighting 
function for that variable times the velocity spectrum 
computed from power spectra of atomic velocity time 
histories. The weighting functions approach zero in 
the low frequency region where anharmonicities would 
otherwise cause problems. Such a quantum correction 
approach is not limited, like most other approaches, to 
nearly classical systems, but can equally be used to 
treat molecular systems with internal vibrational de­
grees of freedom where quantum effects are very strong, 
e. g., molecular liquids, solutions, solids, and poly­
mers, including proteins and nucleic acids, with full 
inclusion of internal degrees of freedom. 

Section II describes the classical calculation of en­
ergy, heat capacity, free energy, and entropy from 
molecular dynamiCS, followed in Sec. III with the theory 
of our quantum correction technique. Section IV de-
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2376 Berens, Mackay, White, and Wilson: Molecular dynamics for liquid water 

scribes the calculation and quantum correction of the 
energy and heat capacity of liquid water. While quite 
good agreement is achieved with experiment, we em­
phasize that our main purpose is to illustrate the tech­
niques and not to make the most accurate possible ther­
modynamic calculations. We point out that the choice of 
boundary treatment can significantly affect the numerical 
results. Section V discusses these results and their 
meaning. 

II. CLASSICAL THERMODYNAMICS FROM 
MOLECULAR DYNAMICS 

The standard equations I linking the canonical partition 
function Q and the various thermodynamic variables are 

E = k T2 a InQ 
B aT' 
aE 

C v = aT ' 

A= - kB TlnQ , 

alnQ 
S = kB T ----aT + kB In Q , 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

in which E is the energy, Cv the constant volume heat 
capacity, A the Helmholtz free energy, S the entropy, 
kB Boltzmann's constant, and T the temperature. 

A. Energy 

The energy at a given temperature T may be computed 
from molecular dynamics in several ways. (i) Choose 
initial conditions for a set of different constant energy 
microcanonical molecular dynamics runs to approximate 
a canonical ensemble at T, e. g., by a sequence of kinetic 
energy randomizations from a Boltzmann distribution. 
The classical energy of the system 

(2.5) 

is then derived as an average, symbolized by <), over 
several molecular dynamics runs from the ensemble at 
temperature T in which Ek is the kinetic energy and V 
the potential energy, letting the positions and momenta 
of the N atoms be represented by rN", rl, ... , rN and 
pN", Ph ••• , PN, respectively. (ii) Compute the tempera­
ture for several different runs at different constant 
values of the total energy by averaging the instantaneous 
temperature defined in terms of the kinetic energy by 

3N 

(T(t) = (3NkBt I L mj«Vj(t»2) , (2.6) 
j.1 

where Vj is a Cartesian component of the velocity of one 
of the N atoms, m j is the mass of that atom, and ( ) 
here indicates a time average. Fit an energy vs tem­
perature curve to the results for several such micro­
canonical molecular dynamics runs. (iii) Adjust the 
kinetic energies during each molecular dynamics run 
in order to represent the system in a heat bath at tem­
perature T as demonstrated by Andersen. 2 In this paper 
we use both approaches (i) and (ii). 

B. Heat capacity 

By performing microcanonical molecular dynamics runs 
at several different energies and computing the average 

temperature for each energy, in other words method (ii) 
above, the heat capacity at constant volume Cv can be 
derived through numerical differentiation of energy E 
with respect to the temperature T. 

In addition, the heat capacity may be calculated in 
principle from the kinetic energy fluctuation for a micro­
canonical ensemble. With the velocity of the center of 
mass set to zero, the heat capacity is given by3.4 

(2.7) 

in which R is kB times Avogadro's number, the number 
of atoms is N, and T is defined as in Eq. (2.6) above. 
Statistical accuracy becomes very important as the 
denominator becomes small, which possibly explains 
why we did not succeed in calculating accurate values 
using this approach. 

C. Free energy and entropy 

The free energy may be computed from molecular dy­
namics by a technique due to Kirkwoodl

•5 which has been 
applied in a parallel manner to Monte Carlo calcula­
tions,6 as demonstrated by Mezei, Swaminathan, and 
Beveridge7 in a classical Monte Carlo calculation of the 
free energy of rigid molecule liquid water. 

The classical canonical ensemble partition function 
QW is defined as l 

QW = (N Ih3Nt l JJ drH dpN exp[ _j3H(rN
, pH,~)] (2.8) 

in which H(rN
, pN, ~) is the classical Hamiltonian of the 

system, the Kirkwoodl •5- 7 ~ is a parameter upon which 
the Hamiltonian depends, and {3 '" (kB T)-I. Equation (2.3) 
now gives 

AW = - ()llnQW. (2.9) 

Differentiating Eq. (2.9) with respect to ~ gives 

/lAW = _{3-1 alnQW , 
a~ a~ 

(2.10) 

which allows us to write 

A(~2) -A(~I) = _ Wi f t2 d~ a InQ(~) 
tl a~ 

(2.11) 

in which ~2 is the value of the Kirkwood parameter which 
gives the real Hamiltonian and ~I is a value which dis­
torts the Hamiltonian to give a reference system (e. g. , 
an ideal gas, a hard sphere liquid, or a harmonic solid) 
for which we can more easily compute the free energy. 8 

USing Eq. (2.8), we have 

(2. 12) 

which by the ensemble postulate of Gibbs 

(2. 13) 
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where the derivative of the Hamiltonian with respect to 
~ is averaged over coordinates and momenta from an 
ensemble with the Hamiltonian containing the parameter 
~. Substituting Eq. (2.13) into Eq. (2. 11) gives 

A(~2) -A(~I) = f.(2 d~( aH(r
N

a(, 0\. (2.14) 
(I I( 

To evaluate Eq. (2.14) by molecular dynamics, atomic 
trajectories are computed for the Hamiltonian H(rN

, 

pN, ~), [aH(rN
, pN, Ol!(a~) is averaged over an ensemble 

of these trajectories at temperature T, and the result 
is then integrated between ~I and ~2' 

In this way, the classical free energy change between 
the system with our real Hamiltonian H(rN

, pN, ~2) and a 
reference system with Hamiltonian H(rN

, pN, ~I) can be 
computed. We choose the reference system to be one for 
which we can compute the classical free energy more 
tractably. 

The entropy S of the system may then be calculated 
using 

S= (E-A)/T. (2.15) 

We will illustrate in a subsequent paper the actual 
molecular dynamics calculation and quantum correction 
of the free energy and entropy of liquid water using ap­
proaches based on the Kirkwood technique. 

III. QUANTUM CORRECTIONS FROM CLASSICAL 
MOLECULAR DYNAMICS 

Outside of the trivial correction for vibrational zero 
point energy which may be calculated from spectroscopic 
data 9 and which is generally introduced as a constant in 
the potential function, the vast majority of work in quan­
tum corrections to classical thermodynamic computations 
stems from a method first introduced by Wigner lO and 
Kirkwood. II ,12 In this approach the free energy is ex­
panded in powers of h2

, and the first term in the quan­
tum correction to be added to the claSSical value of the 
free energy is shown to be proportional to the claSSically 
averaged sum of the squares of the forces exerted on 
the particles in the system. The Wigner-Kirkwood tech­
nique has been modified, extended and tested by many 
workers. 13-21 Others22- 31 have examined various meth­
ods to handle nondifferentiable potential functions which 
apply, e. g., to hard spheres or square wells. Barker 
and Henderson have written a comprehensive review of 
liquids which includes an extensive section on quantum 
corrections. 6 

Another quantum correction method by Doll and 
Myers32 is based on the path integral approach of Feyn­
man and Hibbs. 33 It involves the calculation of an ef­
fective potential V.u in the first stage of a Monte Carlo 
technique. In the second state, V.ff is used to calculate 
the ratio between the quantum mechanical and classical 
partition functions. Stillinger34 discusses the easier 
calculation of effective potentials for pairwise poten­
tials. 

In addition to the quantum corrections considered here 
there are the effects of the symmetry restrictions on 
quantum states imposed by Fermi-Dirac and Bose-

Einstein statistics. In the temperature range of in­
terest here these effects are negligible. 11,12,35 

A disadvantage of all the previously cited techniques, 
except the vibrational zero point energy correction, is 
that they are ordinarily restricted to systems with small 
quantum effects. The method we present in this paper 
may be applied when quantum corrections are large, 
e. g., to intramolecular vibrations. 

Owicki and Scheraga36 discuss the quantum correc­
tions for liquid water. Using approximations to the 
effects of librational and vibrational frequencies, they 
calculate the quantum mechanical contributions from 
vibrational motion to energy and constant pressure heat 
capacity. These quantum contributions minus the clas­
sical values give their quantum corrections. They dis­
cuss the shift in the vibrational frequency of water as it 
enters the liquid phase which changes the zero point 
energy. This is necessary because they use rigid mole­
cules. The type of nonrigid potential which we use in­
cludes both intra- and intermolecular degrees of free­
dom and thus in principle (but not yet in practice due 
to potential energy function inaccuracies as is discussed 
below) can take into account the frequency changes 
from gas to liquid. 

The quantum correction technique used in the present 
paper involves calculating the velocity spectrum S(v) 
from molecular dynamics and then integrating S(v) over 
all frequencies with a weighting function which is the 
difference between the quantum and classical harmonic 
weighting functions for the thermodynamic variable of 
interest. 

A. Velocity spectrum 

The velocity spectrum S(v) of a classical system of 
N atoms in equilibrium is defined as 

aN 

S(v) = 41T{3 L mj (D[ vj(t) 1) , 
j_l 

(3. 1) 

in which >rl j is the mass of the atom corresponding to 
the jth Cartesian velocity component as a function of time 
vj(t), and ( ) indicates an average over the ensemble. 
The spectral density operator D (for which windowing 
and window correction techniques are described else­
where3T,38) is evaluated in terms of probability per unit 
angular frequency, 

. 11fT 12 D[Vj(t)1=(21Ttl!~~ 2T -T dtexp(-i21Tvt)V j (t) (3.2) 

The velocity spectrum may also be computed from the 
Fourier transform of the velocity autocorrelation 
function. Note that the velocity spectrum can be com­
puted separately for different subsets of atoms (e. g. , 
different elements, different chemical environments of 
the same element, or different molecules) and the ve­
locity spectrum S(v) can then be computed as a sum of 
the effects from these different subsets of atoms. Thus, 
as we will see, the quantum corrections also can be 
partitioned among the different subsets of atoms. Even 
though once the dynamiCS, i. e., the set of velocities 
{v/t)}, is determined, the quantum corrections may be 
computed separately for different subsets of atoms, it 
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should be remembered that normally all atoms together 
contribute to determining the dynamics. 

It will be useful below to know the value of the integral 
JO dllS(lI). The Fourier transform of a real function, 
e. g., v i(t), has an even real part and an odd imaginary 
part. 39 The square of the absolute value of such a 
Fourier transform, e. g., D[ vi(t)], is a real even func­
tion. A linear combination of real even functions, e. g., 
S(lI), is also a real even function. Therefore S(-lI) = S(lI) 
which allows us to write 

fOO dllS(lI) = foo dllS(1I)/2 • 
o _00 

(3.3) 

Substituting Eq. (3.2) into Eq. (3. 1) and inserting the 
result into the right-hand side of Eq. (3.3) gives 

foo dllS(lI) = {3 foo dll t mi 
o - ~I 

x (!~~ 2~ / ~T dteXP(-i21TlIt)V i (t)/). 
(3.4) 

Let 

{ 
VOi(t) 

vW)= 

if-T<t<T 

otherwise, 

and let the Fourier transform of 1I~(t) be ~(1I), 

F~(lI)= f~ dtexp(-i21TlIt)1I~(t) 

= r dt exp( - i21TlIt) lIi (t) . 
-T 

(3.5) 

i. e., 

(3.6) 

Substituting Eq. (3.6) into Eq. (3.4), exchanging integra­
tion and the T - 00 limit, and finally using Parseval' s 
theorem39 gives 

100 aN ~ 1 T 2) 
dllS(lI) = (3 L: mi lim 2"1 dll/F~(lI) / 

o i.1 T.OO T -'I' 

(3.7) 

aN 1 iT ) 
={3L: mi(lim2" dt/vW)/2 

i.1 T.OO T -'I' 

(3.8) 

aN ( 1 T ) 
= 2{3 L lim 2" f dt.y (vi (t))2 

i-I T·OO T -'I' 

= 2{3 [3N/2{3] = 3N • (3.9) 

The final substitution is a result of the classical equi­
partition of energy. I Thus, the integral of the velocity 
spectrum from zero to infinite frequency is just three 
times the number of atoms, which will be true for any 
potential, harmonic or not. 

The diffusion coefficient has a particularly simple ex­
pression in terms of the velocity spectrum. The dif­
fusion coefficient 15 of a particle with position history 
r(t) is defined as40 

D= -3
1 

lim 21 ([r(T) -r(O)]2) , 
.,_ao T 

(3.10) 

where ( ) indicates an ensemble average or for isotropic 
systems 

15= -2
1 

lim 21 ([X(T) -X(-T)]2> , 
T-OO T 

(3. 11) 

where X(T) now represents anyone of the three Car-

tesian components of r(T) and the range is changed from 
(0, T) to (- T, T). If we let Do[lI/t) ] denote the value of 
the spectral density at zero frequency, then Eq. (3.2) 
becomes 

Combining Eqs. (3. 11) and (3. 12) we get 

15 = 1T(Do[vj (t)]) • 

(3.12) 

(3.13) 

If S(lI) is restricted to equivalent particles, then Eq. 
(3.1) becomes 

3It 

S(lI) = 41T{3mL(D[Vj (t)]) 
j.1 

= 121TMm{3(D[Vj(t)]) , (3.14) 

where M particles are being considered each of mass 
'11. Then 

(3. 15) 

and thus the diffUSion constant 15 is related to the zero 
frequency value of the velocity spectrum S(O) by 

15 = S(0)/12Mm{3 , (3.16) 

in which M is the number of equivalent particles and m 
is their mass. The most usual application of Eq. (3.16) 
is to consider the particles to be molecules and to com­
pute the diffusion constant from the zero frequency value 
of the velocity spectrum of the center-of-mass of the 
molecules. 

B. Harmonic approximation 

We quantum correct the classical thermodynamic 
variables using a harmonic oscillator approximation. 
This correction is based on a division of the dynamics 
in frequency space. The low frequency region is viewed 
as nearly claSSical but containing the major anharmonic 
effects, and the high frequency region is viewed as nearly 
harmonic and thus can be quantum corrected exactly 
within the limits of the harmonic approximation. Thus 
we can harmonically quantum correct over the whole 
frequency range, and get nearly the correct answer be­
cause (i) in the low frequency range even though the 
correction is inaccurate it is small, and (ii) in the high 
frequency range where the correction is large it is also 
reasonably accurate. 

Consider a system of N atoms as linked by harmonic 
potentials, 

(3. 17) 

in which Ar, and Ark are displacements from a potential 
minimum and Vo is the potential energy at that minimum. 
Such a harmonic situation can be approached classically 
in the limit of small atomic motions about a potential 
minimum, i. e., at low temperatures, but one should 
remember that quantum wave functions sample the po­
tential in a region about the minimum even at absolute 
zero, and thus anharmonicity, both explicit and due to 
coupling by finite displacements, will always playa role 
in real systems. Nonetheless, we believe that at higher 
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frequencies an analysis which uses the finite tempera­
ture classical velocity spectrum interpreted as if it 
were fully harmonic will usually suffiCiently well repre­
sent the thermodynamic quantum corrections. 

In the harmonic limit, a normal mode analysis allows 
us to view the system as a set of 3N harmonic oscilla­
tors. The total canonical partition function Q for the 
system can then be expressed in terms of the partition 
functions qi for the individual modes as 

Q= tt 
i·1 

qi (3. 18) 

or 
3N 

InQ= L 
i·1 

lnqi • (3. 19) 

If the normal frequencies are continuously distributed 
we may take the integral 

In Q = f"" dv S(v) In q(v) , 
o 

(3.20) 

where S(v) is the denSity of normal modes with frequency 
v. 

To show that the velocity spectrum of a system of 
particles linked through harmonic potentials represents 
the density of normal modes, the 3N time varying Car­
tesian position components XI> ••• ,X3N, are first repre­
sented in terms of normal coordinates. We have41 

3N 

x k= (m~-1/2 L aikqi , 
i·1 

(3.21) 

(3.22) 

where ql> ... ,q3N are the normal coordinates, wl> ••• , waN 

are the characteristic normal mode angular frequencies 
in which 21TVi = Wi' Ai is the jth normal mode amplitude, 
{)i is its phase, and a jk are constants scaled such that 

(3.23) 

The kinetic and potential energies in terms of the nor­
mal coordinates qJ which have units of length times 
square root of mass and qj which are the time deriva­
tives, are 

1 ~aN .2 E k = - qi , 
2 i. 

(3.24) 

1 3N 
V= - L w~q~ . 

2 i.1 
(3.25) 

USing Eqs. (3.21) and (3.22) to calculate xk = vk and in­
serting the result into Eq. (3. 1) we get 

3N 3N 

S(v) = 47Ti3 L mk (n r(mkt l /2 L aik Wi Ai cos( Wit + {)}) . 
k.1 L' i-I ~ 

(3.26) 
The power spectral density of a Sinusoidal function is42 

A2 
n[Ai cos(Wj t+ {)i)]= T [6(w + w) + 6(w - wi)] • 

(3.27) 
Applying this to Eq. (3.26) gives 

3N 

S(v) = 41T{:l L (w~~ /4) [6(w+ Wi) + 6(w - Wi)] , 
i·l 

(3.28) 
where Eq. (3. 23) has been used. 

Applying the theory of equipartition of energy to Eq. 
(3.24) we get 

(213)"1 = (q ~ /2) (3.29) 

(3.30) 

in which ( ) here denotes a time average. Substituting 
this into Eq. (3.28) gives as our final result 

aN 

S(v) = 21T L [6(w + Wi) + 6(w - wi)] 
i_I 

= f [6(v+ Vi) + 6(v-vi )]· (3.31) 
J=I 

Thus S(v), the velocity spectrum, which is computed 
from the Cartesian velocity time histories, is indeed 
the normal mode density for a harmonic system. 

C. Classical weighting functions 

The classical partition function for a single harmonic 
oscillator (normalized as usual to the quantum partition 
function by the inclusion of h-I) is l 

qC(v) = (f:lhv)-I = u- I , (3.32) 

where the superscript C indicates that the variable is 
derived classically, u == {:lhv is the reduced energy of the 
harmonic oscillator i3 = (kB T)-I, h is Planck's constant. 
and v is the frequency of the oscillator. Substituting 
Eq. (3.32) into Eq. (3.20), and inserting this result in­
to Eqs. (2.1) through (2.4) gives 

E C= Vo+kBT f"" dvS(v)~(v); w~(v)= 1, 
o 

C~= kB r"" dvS(v)Wg (v); wgv(v) = 1 , )0 v 

(3.33) 

(3.34) 

A C= Vo+ kBT 1"" dvS(v)W~(v); W~(v) = lnu, (3.35) 
o 

Sc= kB 10"" dvS(v)W~(v); W;(v) = [1- lnu]. (3.36) 

These classical weighting functions WC (v) are shown in 
Fig. 1. To allow the zero of energy to be set arbitrari­
ly, we include Vo, the energy of the system treated 
classically if all oscillations are stilled. The expres­
sions for energy and heat capacity reduce to the fami­
liar classical results 

E C = Vo + 3NkB T , 

C; = 3NkB • 

D. Quantum weighting functions 

(3.37) 

(3.38) 

The quantum mechanical partition function for a single 
harmonic oscillator is l 

Q _ e-u / 2 

q (v)- -1 -u' -e 
(3.39) 

where the superscript Q indicates that the variable is 
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FIG. 1. Universal harmonic 
weighting functions W(v) for the 
hydrodynamic functions of any har­
monic system. Dotted lines are 
classical WC (v) from Eqs. (3.33) 
to (3.36), dashed lines are quan­
tum WJ(v), from Eqs. (3.40) to 
(3.43) and solid lines are quantum 
correction WA(v) = WJ(v) _ WC(v) , 

from Eqs. (3.45)-(3.48). It is 
thus solid line curves which are 
used to weight the velocity spec­
tra S(v) to compute the quantum 
corrections to the thermodynamic 
functions. The top panel is for 
energy E, the next to the top panel 
is for constant volume heat capacity 
Cv , the next to the bottom panel 
is for Helmholtz free energy A, 
and the bottom panel is for entropy 
S. The lower horizontal scale is 
plotted in reduced energy u = {3h v. 
The upper horizontal scale is the 
wave number equivalent to u at 
300 K. Note that all the quantum 
correction weighting functions go 
to zero at low frequency where an­
harmonic effects become impor­
tant. 

derived quantum mechanically and again u == (3 hv is the 
reduced energy. Substituting Eq. (3.39) into Eq. (3.20) 
and inserting this result into Eqs. (2. 1) through (2.4) 
gives 

~=Vo+kBTfo"dvS(v)W~(v); W~(v)=(i + eUU_1) , 

(3.40) 

~ = kB r" dvS(v)W~ (v) )0 v 

(3.41) 

AQ=Vo+kBT fa" dvS(v)W~(v); W~(v)=(ln 1~:;;), 
(3.42) 

sO = kB 10" dvS(v)W~(v); W~(v) = (eu ~ 1 -In(1- e-U)) . 

(3.43) 
Fig. 1 shows these quantum weighting functions WQ(v). 

For a system which closely approximates a set of 
harmonic oscillators, such as a perfect crystal at low 
temperature, 1,8 the above equations alone can be used 
to compute the thermodynamic variables. 

E. Quantum correction weighting functions 

The quantum corrections (indicated by the superscript 
A) are obtained by subtracting the classical representa­
tions from the quantum mechanical representations for 

the given thermodynamic variable. 

WA(v) = WQ(v) - WC(v) , 

EA = EQ - E C = kB T i" dVS(v) W:(v) 
o 

W~(v) = (i + eU ~ 1 -1) , 
c: = c~ - C; = kB 1" dVS(v) w~ (v) 

o v 

W~v(II)=((1u~:u")2 -1) , 
AA=AQ-Ac=kBT f

o
" dIlS(II)W!(II) 

W!(v) = (In ~:f;u -lnu) , 

SA = SQ _Sc = kB fo" dIlS(II)W~(II) ; 

W~(II)=(eU~1 -In(1-e-U)+lnu-1). 

(3.44) 

(3.45) 

(3.46) 

(3.47) 

(3.48) 

The quantum correction weighting functions ~(II) are 
also shown in Fig. 1. Note that following Eqs. (3.1), 
(3.2), and (3.45)-(3.48) we can partition if we wish the 
quantum corrections among different subsets of atoms, 
e. g., different elements, different chemical environ­
ments of the same element, different molecules, or 
molecules in different environments. 

IV. MOLECULAR DYNAMICS RESULTS FOR LIQUID 
WATER 

Water is the most important of all solvents, and the 
molecular level understanding of its bulk properties is 
of considerable intrinsic interest. We have thus chosen 
it as a test case for our techniques. A quantum cal­
culation for a system of molecules large enough to ade­
quately represent liquid water is at present impractical, 
and thus thermodynamic quantities are computed by 
classical mechaniCS, usually by Monte Carlo or molecu­
lar dynamics techniques. Such classical molecular 
mechanics calculations on liquid water have been dis­
cussed in reviews by Stillinger, 34 Barnes,43 Wood,44 
and Beveridge et al. 45 Goel and Hockney46 have written 
a comprehensive bibliography for earlier molecular 
dynamics in general. It will be shown for liquid water 
that quantum corrections are needed for both inter-
and intramolecular motions to match experimental quan­
tum reality. 

A. Liquid water potentials and previous computer 
simulations 

A major obstacle for any molecular mechanics com­
puter simulation is the development of an accurate po­
tential surface. Numerous empirical, 18,47-57 ab . 
initio, 58,59 as well as several recent polarizable60 ,61 
water potentials have been developed. Many molecular 
dynamic50,62-75 and Monte Carl07, 36,45, 56-58, 71, 76-94 calcula-
tions have been carried out on liquid water by various 
authors using most of the potentials cited above. In ad­
dition, Weres and Rice95 discuss the calculation of liquid 
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water thermodynamic properties and their quantum 
corrections from a cell mOdel viewpoint. Several papers 
have tested and compared the variety of water-water 
potentials, often with disappointing results. 51,96 

The flexible water dimer potential used in this paper 
is by Watts91 (WATTS) and consists of a largely empir­
ical intermolecular potential complemented by an intra­
molecular potential derived from vibrational spectros­
copy.96 The WATTS potential has been studied and 
criticized by McDonald and Klein. 74,75 

B. Molecular dynamics 

Our molecular dynamics calculations are carried out 
on a system of 250 water molecules at a density of 1. 0 
g cm,3 and a temperature of 300 K with cubic periodic 
boundary conditions using a special molecular mechanics 
package running on an array processor. 99,100 Experi­
mentally, this density corresponds to a pressure of 85 
atm with a negligible resulting difference101 of 0.012 
kJ mol,l in total energy compared to a pressure of 1 
atm which corresponds to a density of 0.997 g cm,3. 
Previous molecular dynamics calculations of thermo­
dynamic quantities for water have been carried out using 
an array processor by Rapaport and Scheraga65, 102 who 
studied a sample of 343 rigid waters using the CI po­
tential with long runs and by Swope, Andersen, Berens, 
and Wilson 73 who studied the properties of water 
clusters. The software used previously99,100 has been 
augmented by an intermolecular force and energy cal­
culator for water as implemented by Swope and Ander­
sen. 103 This calculator utilizes a piecewise fifth order 
polynomial fitted to the analytical potential energy func­
tions as a function of the square of the distance between 
the two atoms being considered. It thus both allows 
a general algorithm to evaluate the polynomial previOUS­
ly fitted to arbitrary analytic functions and eliminates 
the necessity of a square root operation. 

The method for applying a switching function as 
developed by Andersen and Swope smooths each water­
water energy contribution to zero as the corresponding 
oxygen-oxygen distance passes through the switching 
region, which for our system extended from O. 85 to 
O. 90 nm. This technique eliminates the problem of 
artifiCially created monopoles (and possibly large di­
poles) normally encountered by an atom-atom force 
feathering or truncation method as only part of the 
water passes through the feathering region (and is pos­
sibly imaged). This artifact is especially pronounced 
with water unless the Andersen-Swope technique is 
used as the partial charges on each atom are relatively 
large. 

The semiempirical flexible water molecule potential 
developed by Watts97 is used. The intermolecular po­
tential is pairwise by atoms and fitted to the second 
vi rial coefficient of steam. The intramolecular po­
tential is a standard Taylor's series in internal co­
ordinates about the potential minimum as derived from 
vibrational spectroscopy. 98 

Equilibration of the initial water system is ac­
complished by following periods of dynamics (0.1-2.0 ps) 

WAVENUMBERS (loa a cm'l) 
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000 cSo(v) 
E - CSH

2
O(V) ... '-' 

'Q , ,-- CSCM(v) , 
'" ~ ~"~~~~~ us 0', 

'-' 5 oO~';,~~:7~c>. " 
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FIG, 2. Velocity spectra times the speed of light e normalized 
for one molecule of HP at 300 K and I, ° g cm,3, using the Watts 
potential with 250 waters and cubic periodic boundary conditions, 
The lower panel contains eSH(v) for the hydrogen atoms per 
molecule of water, eSo(v) for the oxygen atoms per molecule 
of water, the sum, eSH(v) +eSo(v) =eSH?O (v), and the center-of­
mass velocity spectrum eSc•m• (v). The upper panel is a blowup 
of the low frequency region of the lower panel. The lower hori­
zontal scales are in terms of the reduced energy u =/3hv. The 
speed of light e is included so that the integral of eS(v) in em 
vs the upper scale of wave numbers in cm,l will be dimension­
less, giving the total number of equivalent harmonic oscillators. 
For a purely harmonic system the velocity spectrum S(v) would 
give the number of harmonic modes per unit frequency. Note 
that the H atoms dominate SH20 (v) above 300 cm,l and the 0 
atoms below it. 

with randomizations of velocity according to a Max­
well-Boltzmann distribution at the desired temperature 
until the temperature of the system stabilizes. The 
total Simulation time involved in equilibration is approxi­
mately 60 ps. The time step of integration during 
equilibration is O. 5 fs while for the data collection a 
time step of O. 25 fs is used. 

The velocity data is accumulated by selecting out the 
velocities every 12 time steps over a period of 50000 
time steps (12.3 ps total simulation time). A more 
elegant approach would be to use a digital low-pass 
filter before sampling. 104 The energy and heat capacity 
data are the result of a much longer series of seven runs 
for a total of 380000 time steps over 95 ps. 

C. Velocity spectra 

The velocity spectra S(II) shown in Fig. 2 are cal­
culated by fast Fourier transforms of the velocity time 
histories of various components of the system. We 
define the following normalized velocity spectra 
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4 fJ 211 
SH(II) = M1T L m~ (D [~(t)]> , 

J.I 

/I 

SO(II) = 4M1TfJ L m7 (D [v7(t)]) , 
J.I 

SH2'> (II) = SO(II) + SH (II) , 

/I 

SCM(II) = ~ L m~2'> (D[vrM(t)]) , 
J.I 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

where mO
, mH

, and mH20 represent the masses of an 
oxygen atom, hydrogen atom, and water molecule re­
spectively; D is the spectral density operator defined in 
Eq. (3.2); v~(t), ~(t), and vrM(t) represent the velocity 
time histories of the jth oxygen atom, hydrogen atom 
and molecular center-of-mass, respectively; M is the 
number of water molecules, where M=N/3; and a fac­
tor of 1/ M has been introduced to normalize the velocity 
spectra to that for one molecule of water. The contri­
bution to SH20(1I) by both the oxygens and the hydrogens 
is determined by computing each spectrum So(lI) and 
SH(II) separately. The high frequency vibrational peaks 
composed mainly of the oxygen-hydrogen vibrations are 
easily seen in Fig. 2. The center-of-mass velocity 
spectrum of the system is also computed and its spec­
trum reflects the highly damped vibrational modes of 
whole water molecules. 

The area under SH20(1I) in Fig. 2 equals 9.0, theequiv­
alent number of harmonic oscillators per molecule of 
water, as expected from Eq. (3.9). (The speed of light 
is introduced to make the integral vs cm- I unitless.) The 
double peak in the range 2600-5000 cm- I, which corre­
sponds to the symmetric and asymmetric stretching 
modes of the water molecule, has an area of 1. 89. The 
peak in the range 1200-2600 cm-!, which corresponds to 
the bending of the HOH bond angle, has an area of 1. 00. 
This substantiates the view of S(II) as a density of nor­
mal modes and further suggests that the close associa­
tion of the water molecules in the liquid phase has shifted 
some of the high frequency stretching motion down into 
the low frequency region. 

In principle a potential with both intra- and inter­
molecular degrees of freedom like the WATTS potential 
we have used could take into account the frequency 
changes from gas to liquid. The actual frequencies 
for the WATTS potential for the gas phase should be 
close to the harmonic values!05 of 111= 3832 cm- I (sym­
metric stretch), 112= 1649 cm- I (bend), 113= 3943 cm- I 

(asymmetric stretch), compared to the computed liquid 
phase peaks centered at 3680, 1740, and 3760 cm- I as 
shown in Fig. 2. In real water, the infrared and Ra­
man spectra show the gas phase anharmonic fre­
quenciesl08 to be 3652, 1595, and 3756 cm-I and the 
liquid phase9, lOT shows a bending peak at approximately 
1650 cm- I and a broad stretching peak centered at ap­
prOXimately 3400 cm- I with perhaps a subsidiary peak at 
apprOXimately 3200 cm- I. Thus the WATTS vibrational 
shifts from gas to liquid phase qualitatively resemble the 
real water shifts with large shifts downward in frequency 
for the stretching motions and a smaller shift upward for 
the bending motion, but the agreement is certainly not 
quantitative. 

From SCM(O) in Fig. 2 and Eq. (3.16) we obtain for the 
center-of-mass diffusion coefficient 15 of water a value 
of 4.08>< 10-9 m2 S-I compared to the experimental 
valuel08.I09 of 2.42>< 10-9 m2 S·I for liquid water at 300 K. 
The precision of our reported value is questionable be­
cause we selected out every twelfth velocity rather than 
all velocities for the fast Fourier transform due to com­
puter memory limitations, and a more reliable value 
could be computed from the asymptotic slope of the mean 
square displacement of the center-of-mass for a long 
molecular dynamics run. It should also be remembered 
that the finite size of the periodic boundaries may affect 
the longest wavelength and lowest frequency motions and 
in particular that hydrodynamic or concerted motions 
involving many molecules may not be accurately handled. 

Berendsen et al. 55 have reported a spectral density of 
the center-of-mass of rigid molecule liquid water, using 
the SPC potential, which is strikingly similar to our 
SCM(II). They report a diffusion coefficient of 3.6><10-9 
m 2 S·I. 

D. Quantum corrections 

The difference between the classical and quantum 
mechanical weighting functions W(II) arises from the dif­
ference between the classical and quantum harmonic os­
cillator partition functions q(II). In the classical limit 
of h - 0, or equivalently u - 0, II - 0, or T - 00, this dis­
tinction disappears, 

limqO(lI) = limf(lI) (4.5) 
h-O h-O 

This implies 

lim ~(II) = lim WQ(II) = lim WC (II) (4.6) 
h-O .-0 .-0 

and thus, 

(4.7) 

in all cases, as can be seen in Fig. 1. The divergence 
of WQ(II) from WC(IJ) as II increases results in a pref­
erential weighting of high frequency motions in the 
calculation of quantum corrections. 

Table I gives the liquid water quantum corrections 
computed from the velocity spectrum SH20(V) from Eqs. 
(4.1)-(4.3) as shown in Fig. 2 and the quantum cor­
rection weighting functions Wb.(v) as shown in Fig. 1, 
using Eqs. (3.45)-(3.48). The curves of the products 
of S(II) and Wb. for the energy, heat capacity, free 
energy, and entropy are shown in Figs. 3-6, illustrat­
ing the contribution to the quantum corrections as a 
function of frequency and of atom type. A separation 
is made for the purposes of Table I in frequency 
space at 1200 cm- l between the intermolecular and in­
tramolecular motions for liquid water. Note that the 
intermolecular motions, the hindered translationJand 
rotation, contribute substantially to the total quantum 
corrections. 

Classically, a harmonic oscillator contributes kBT 
to the energy regardless of frequency as a result of equi­
partition of energy. This produces a straight line for 
the classical weighting function in the top panel of Fig. 
1. Quantum mechanics, however, requires that a 
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TABLE I. Inter- and intramolecular contributions to 
liquid water quantum corrections at 300 K per mole. 

Inter Intra 
(0-1200 cm-I ) (1200-5000 cm-I ) Total 

Eb. (kJ) 4.2 45.0 49.2 

C~{J!K) -11.0 -23.8 -34.8 

Ab. (kJ) 2.2 33.4 35.6 

Sb.(J!K) 6.5 38.8 45.3 

harmonic oscillator contain a minimum or zero point 
energy of hll/2. For a harmonic oscillator with hll 
«kBT, this requirement is unimportant and quantum ef­
fects are small. In contrast, a harmonic oscillator with 
hll» kBT has an average energy near hll/2. As a result 

lim wj(II)=u/2={3(hll/2) • (4.8) 

Thus the quantum effects are large for a high frequency 
harmonic oscillator as it contributes hll/2 to the energy 
instead of kBT. Table I shows a value of 49.2 kJ for the 
total quantum correction to energy. Others have ac­
counted for this. quantum effect by introducing a con­
stant into the potential energy function. Using spectro­
scopic data, Eisenberg and Kauzmann9 have calculated 
55.45 kJ as a zero point energy. 

Heat capacity is unique in that it results in a negative 
quantum correction, and it has the most significant con­
tribution from the low frequency region compared to the 
other corrections we have listed. As a result of equi­
partition of energy, the classical harmonic oscillator 
contributes kB to CII regardless of frequency. This 
produces a straight line in the next to the top panel of 
Fig. 1. In contrast, the quantum mechanical harmonic 

WAVENUMBERS (1000 emil 
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<l :, 25 r-­
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-

FIG. 3. Energy quantum correction curves for liquid water for 
H atoms,for 0 atoms, and their sum giving the total H20. 
Plotted is the product of the speed of light c, the velocity spec­
trum S (v), and the energy quantum correction weighting func­
tion w~ (v) vs the reduced oscillator u == {3hv on the bottom axis 
and the wave number equivalent at 300 K on the top axis. The 
integral of the product S (v) wi (v) vs v gives the quantum cor­
rection to energy, as shown in Eq. (3.45). The figure also il­
lustrates how the quantum correction partitions between the 0 
atoms and the H atoms which dominate at all but the lowest fre­
quencies. 
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FIG. 4. Constant volume heat capacity quantum correction 
curves for liquid water for H atoms, for 0 atoms, and their sum 
giving the total H20 quantum correction. The integral of the 
product S(II) ~ (II) vs II gives the quantum correction to constant 
volume heat caPacity, as shown in Eq. (3.46). 

oscillator with hll » kB T is "stuck" in the ground state 
and changes very little in response to changes in tem­
perature. As a result, 

limW~(II)=O. 
., .. 00 11 

(4.9) 

Thus, for each harmonic oscillator with hll» kBT, kB 
must be subtracted from the classically calculated CII' 

The importance of the low frequency contribution to the 
quantum correction for constant volume heat capacity 
results from the rapid divergence of W~ (II) and wg (II) 

1/ 1/ 

as II increases from zero. 

The equation A == E - TS holds in an analogous manner 
for the quantum corrections as a result of the linear 
form of the quantum correction equations. The energy 
term dominates for harmonic oscillators and thus the 
quantum correction for free energy is always positive. 

The reader may be surprised that the quantum correc­
tion for entropy is positive. A quantum mechanical har-
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FIG. 5. Helmholtz free energy quantum correction curves for 
liquid water for H atoms, for 0 atoms, and their sum giving the 
total H20 quantum correction. The integral of the product 
S{v) wi (II) vs v gives the quantum correction to Helmholtz free 
energy, as shown in Eq. (3.47). 
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FIG. 6. Entropy quantum correction curves for liquid water for 
H atoms, for 0 atoms, and their sum giving the total H20 quan­
tum correction. The integral of the product S(v) W~ (v) vs v 
gives the quantum correction to entropy, as shown in Eq. (3.48). 

monic oscillator with hv» kBT is stuck in the ground 
state and contributes almost nothing to the entropy. 
Thus, as seen in Fig. 1, 

lim W~(v) = 0 • (4.10) 
V~O 

In contrast, the classical harmonic oscillator weighting 
function has the following properties: 

lim W~(v) = co , (4.11) 
V~O 

lim W~(v) = - co • (4.12) 

The first equation indicates that an unconstrained par­
ticle has an unlimited number of available states. The 
second equation results from the difficulty of applying 
the third law of thermodynamics to the classical repre­
sentation of entropy for a harmonic oscillator. Be­
cause of the negative sign of the classical weighting func­
tion, the quantum correction for entropy is positive. 

Figures 3-6 show the products of the velocity spectra 
S(v) with the quantum correction weighting functions 
Wll(v) for energy E, constant volume heat capacity Cu, 

Helmholtz free energy A, and entropy S. Since SH20(V) 
can be partitioned into separate contributions from the 
hydrogen and oxygen atoms, we also partition the 
products SH2 0 (V)W A(v) and thus compute separately the 
hydrogen and oxygen atom contributions to the quantum 
corrections. The hydrogen atom motions dominate ex­
cept at the very lowest frequencies which have little 
weight anyway. 

E. Energy 

Seven water samples with different energies are 
created and equilibrated, and the average temperature 
for each sample, calculated over at least 10 ps running 
time, is plotted in Fig. 7. A straight line is fitted to 
the points. and the total classical energy E C cor­
responding to 300 K is calculated. By averaging over 
a subset (500 time steps selected over a time period 
of 1. 25 ps) of a complete run at 300 K we also compute 
the average value of the intramolecular potential en­
ergy V Intra; the intermolecular potential energy V Int er; 

TABLE II. Energy (kJmor!). 

V lntra 5.2 

vlnte • -42.1 

Ek 11.2 

E C -25.6a 

Ell 49.2 

Etheor=Ec + Ell 23.6 

Eexptl 21.5b 

"Calculated from Fig. 7. 
bsee Table IV. 

and the kinetic energy Ek as shown in Table II. Be­
cause E C is calculated from the fitting shown in Fig. 7 
while Vlntra , Vlnter, and E k are calculated from the short 
subset discussed above, there is a O. 1 kJ mol-1 discrep­
ancy between the values shown in Table II for E C and 
for the sum of its components V Intra + V Inter + E k. The 
quantum correction EA is obtained by integrating the 
function S(v) W~(v) as shown in Eq. (3.45) and Fig. 3. 
Addition of the kinetic energy (calculated from instan­
taneous velocities 73,110) to the total potential energy re­
sults in conservation of energy to one part in 30000 
with the O. 25 fs integration step size used. As sug­
gested by Andersen!l1 we graphed the standard devia­
tion of the total energy vs the time step squared for 
several molecular dynamics runs. The resulting linear 
plot verified the accuracy of our computer package as 
the Verlet integration110• 112 algorithm gives an error in 
total energy in proportion to the square of the integra­
tion time step used. To calculate Vlntra, we first remove 
a constant representing the zero point energy contribu­
tion from the original WATTS intramolecular potential. 97 

McDonald and Klein75 calculate an intermolecular po­
tential energy of - 33 kJmol-! for the WATTS potential 
for 273 K and 1 g cm-! and Reimers and Watts57 report 
an intermolecular potential energy of - 36. 6 kJ mol-! 
for the WATTS potential at 298 K and 0.997 g em -1. Both 
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FIG. 7. Calculation of the classical energy E as well as the 
classical constant volume heat capacity C v by least squares 
linear fit of E with respect to T. Values of the average tem­
perature T are calculated from the kinetic energy Ek for micro­
canonical molecular dynamics run of at least 10 ps at each of 
seven different energies. 
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TABLE Ill. Energies in kJ morl with standard deviations given in parentheses, bond lengths, 
and bond angle distortions for several cutoff and featuring boundary methods. 

E e ~(%) 6J 
Type V inlra Vinlor ;J(%) 

r.~ .~ 

ANDERSEN 5.2 (0.22) -42.1 (0.26) - 25.8 (0.00099) 0.52 -1.0 

CUTOFF 1 5.5 (0.32) -58.8(6.1) -41.8(6.4) 

CUTOFF II 5.5 (0.32) - 50. 4 (0.45) - 33.6 (0.029) 

AA SMOOTH 27.5 -111.7 

IG 4.7 

calculations above differ from the present one in that 
their water molecules are constrained to be rigid. To 
determine the effect of this we increased the force 
constants on our waters by a factor of first 4 and then 
16 while decreasing the time step first by 2 and then 
by 4. The result is that the intermolecular potential 
energy decreases (becomes more negative) with changes 
on the order of 1 to 2 kJ, indicating that the introduction 
of flexible waters increases (makes less negative) the 
intermolecular potential energy over a rigid water cal­
culation. Reimers and Watts run at 298 K and the 1 
atm density of 0.997 g cm-1 compared to our temperature 
and 85 atm density of 300 K and 1. 0 gem-I. We per­
formed a special test run at 0.977 g cm-1 and 298 K and 
calculated an intermolecular potential energy only 
marginally different from the first value, in line with 
the 0.012 kJ mol-1 shift expected101 from experimental 
thermodynamic measurements. We perform a mole­
cule-by-molecule imaging with force feathering tech­
nique following Andersen103 rather than molecule-by­
molecule potential cut-offs as used by Reimers and Watts 
or Ewald sums as used by McDonald and Klein. To 
explore the effects of potential or force smoothing or 
cutoff, we performed several additional test runs whose 
results are summarized in Table III. The standard 
deviations are given within parentheses and a time step 
of O. 25 fs is used for each run. 

Perhaps the best way to compare111 flexible water 
molecular dynamic and rigid water Monte Carlo cal­
culations is to compare the difference in energy of the 
liqUid and vapor states. For the Monte Carlo runs by 
Reimers et al. 57 this value is merely the intermolecular 
potential energy, - 36. 61 kJ mol-I. For a flexible mole­
cule calculation the heat of vaporization is the inter­
molecular potential energy for the liquid plus the dif­
ference in intramolecular potential energy upon the 
phase transition from liquid to gas. For our system 
t1E = - 42.1 + 5. 2 - 4.7 = - 41. 6 kJ mol-I. The experi­
mental value94 is - 41. 0 kJ mol-1 at 300 K, and - 41. 4 
kJ mol-1 at 298 K. 

Boundary effects are a Significant problem for sys­
tems like liquid water where the long range Coulombic 
forces extend well beyond the dimensions of the model. 
One way to deal with these nonzero forces near the 
boundary is to choose a cutoff distance beyond which the 
potential energy is set to zero. For an atom-atom cen­
tral force system, this cutoff of the potential can be 
carried out atom by atom (CUTOFF I in Table III), and 

0.56 -1.0 

0.56 -1.0 

1.8 -1.7 

0.2 - 0.1 

the resulting forces necessary for molecular dynamics: 
calculations are then the derivatives of the potential 
within the cutoff distance and zero beyond, with a delta 
function at the boundary which being of measure zero 
in length is never seen by the dynamics calculation. 
Such energy-force pairs are inconsistent due to the ef­
fective neglect of the delta function force term at the 
cutoff distance and which prevents conservation of en­
ergy in actual molecular dynamics runs as required 
for microcanonical systems as the atoms failing to 
feel the force delta function can drift back and forth 
over the cutoff boundary with resulting large potential 
energy fluctuations. For ordinary Monte Carlo sys­
tems where forces are not needed, this difficulty is 
avoided. We suspect however that the large fluctuations 
in the radial distribution function, which occur at the 
cutoff distance, introduce Significant perturbations to 
the system. Table III shows the results of a sample 
mOlecular dynamics calculation using a cutoff of O. 875 
nm at the midpoint of the O. 85 to O. 90 nm Andersen­
Swope feathering which we used for our actual thermo­
dynamic calculations. Notice that the standard devia­
tion (in parenthesis) for the intermolecular potential 
energy is a full 57% of the kinetic energy. 

By cutting off the potential molecule-by-molecule using 
either the distance between the two centers-of-mass or 
the very similar oxygen-oxygen distance (as Andersen 
has done in his molecule-by-molecule smoothing meth­
od) as the functional variable, the effectively neglected 
delta function force terms used in molecular dynamics 
calculations are reduced significantly in magnitude as 
they now represent truncated dipole-dipole rather than 
monopole-monopole interactions. Molecule-by-mole­
cule cutoff is also preferable to atom-by-atom cutoff 
for Monte Carlo calculations as the fluctuations in the 
radial distribution function at the cutoff distance should 
be greatly reduced. 

One way to conserve energy in molecular dynamics 
runs while still using the atom-by-atom cutoff method 
is to set the atom-atom potential beyond the cutoff dis­
tance to its value at the cutoff distance (CUTOFF II). 
The energy-force pair is now consistent and for mole­
cules like water where the forces are essentially 
Coulombic at the cutoff distance (and the total charge on 
each molecule is zero) the energy contribution for a 
molecule-molecule interaction conveniently sums to 
zero when all the atom-atom interactions are beyond 
the cutoff distance. The results for this method are 
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also shown in Table III. Note the order of magnitude 
reduction in the standard deViation of the total energy. 
In both cutoff methods, waters have a tendency to 
"straddle" the cutoff distance boundary in such a way 
as to reduce repulsive and increase attractive atom­
atom interactions. For CUTOFF II, this has a negligible 
effect as the potential energy for any atom-atom inter­
action changes little across the boundary. For CUT­
OFF I, however, each atom-atom potential energy 
function is truncated to zero at the cutoff distance which 
causes an artificially low intermolecular potential en­
ergy, an effect in this case of 8. 2 kJ mol-i. 

Another method which might seem reasonable in or­
der to create a consistent energy-force system for 
molecular dynamics calculations is to smooth each 
atom-atom potential separately to zero (AA SMOOTH) 
in some smoothing region and then take the derivative 
to obtain the force. Indeed such a technique might be 
useful for systems where the value of the potential at 
the cutoff distance is near zero. For water this is not 
the case, however, and AA SMOOTH is totally useless 
in this application. For our test run we smoothed each 
potential to zero from 0.85 to 0.90 nm, and the cor­
responding force was calculated. The resulting energy 
values as shown in Table III differ drastically from ex­
perimental ones mainly due to the large fluctuations in 
the radial distributions near the cutoff distance. Large 
forces (20-30 times larger than for the unsmoothed po­
tential) in the smoothing region cause such fluctuations 
and are a result of the steep slope of the potential neces­
sary to smooth it to zero. One might view this effect 
as similar to smoothing the neglected delta function 
force term of the CUTOFF I system over 0.05 nm. 

The technique by Andersen and Swope!03 (ANDERSEN) 
which smooths each entire water-water interaction to 
zero, thus eliminating the large forces of AA SMOOTH, 
may be viewed as smoothing the delta function force 
terms of molecule-by-molecule cutoff or equivalently 
dipole-dipole interactions over a small range, 0.05 
nm in our case. It gives the best energy conservation 
and smallest Vlntra and V1nter fluctuations as shown in 
Table III. In addition its waters are put under the least 
"stress" as measured by Vlntra' 

It may be concluded from the data in Table III that 
there are several advantages to using the ANDERSEN 
method. It should also be noted that the chOice of 
method of handling boundary effects significantly in­
fluences energy calculations with differences on the 
order of 10 kJ mo!"!. 

Table III also contains information on the intramolecu­
lar energy, the bond lengths, and the bond angles for 
each system. Vlntra may be seen as a rough index to 
the stress each water molecule is experienCing. For 
an ideal gas (IG), i. e., for the same intramolecular 
potential with the intermolecular potential turned off, 
the intramolecular energy at 300 K is 4. 7 kJ mol-! , 
0.96 kJ mol-! above the 3/2kB T value of 3.74 kJ mort 
one would expect if no anharmonic effects were found. 
In the liquid state, however, each oxygen-hydrogen 
bond on the average is stretched and each HOH angle 
on the average is reduced below the equilibrium value, 

thus increasing Vlntra above the ideal gas level. 

For a nonrigid calculation at 295.4 K using the LS 
potential, Rahman, Stillinger, and Lemberg69 report 
Vlntra + Vlnter = - 34. 8 kJ mol-!, while we calculate for 
WATTS at 300 K Vlntra + Vlnter = - 36.9 kJ mol-i. In 
their partitioning between Vlntra and Vlnter they as­
sume, but do not measure, that Vlntra is given by the 
expected undistorted harmonic oscillator values, an 
approximation which we see to be incorrect, at least in 
our case, due to anharmonicity and intermolecular 
force induced molecular distortion. 

The experimental value to which the calculated inter­
molecular energies should be compared deserves some 
discussion as two significantly different numbers are 
quoted throughout the literature. One way to obtain the 
intermolecular potential energy of liquid water is to 
equate it to the difference in energy of the fluid and va­
por states. This is calculated by subtracting PV from 
the heat of vaporization of water at 300 K. Using this 
method, Dashevsky and Sarkisov94 obtain for the inter­
molecular potential energy from experimental data 
- 41. 0 kJ mol-l at 300 K, and - 41. 4 kJ mo!"! at 298 K. 
As pointed out by several workers, 36,56,57,113-116 how-
ever, the bending and stretching frequencies of water 
change upon condensation, and this difference in intra­
molecular energy must be accounted for, as well as the 
correction for conversion of free to hindered translation 
and rotation. Reimers et al. 57 calculate the resulting 
zero point energy shifts and estimate a correction on 
the order of 7.5 kJ mo!"! which would lead to an inter­
molecular potential energy of - 33. 9 kJ mol-! for 298 
K. Owicki and Scheraga36 on the other hand use a slight­
ly different method than Reimers et al. 57 and estimate 
a correction close to zero. As discussed in Sec. III, 
Owicki and Scheraga calculate the entire quantum in­
termolecular energy from spectra by making a harmonic 
approximation and subtract from that energy the clas­
sical potential energy to obtain their quantum cor­
rection. This may account for the variation in experi­
mental intermolecular potential energy quoted in the 
literature, as some workers use the corrected value 
as calculated by Reimers et al. 57 some use the cor­
rected value as calculated by Owicki and Scheraga, 36 
while others use no correction at all. 

The equivalent Eexpt experimental value for total en­
ergy is the difference in energy between liquid water at 
300 K and ideal noninteracting water vapor at 0 K with 
no zero point vibrational energy, measuring energies 
from the bottom of the potential well for noninteracting 
molecules. It may be calculated as follows: 

E 300K(liq) - Eo K(vap) 

= [E300K(liq) -EoK(ice)]+[EoK(ice) -EOK(vap)] (4.13) 

". [H300K(liq) - HQK(ice)] + [HoK(ice) - HQK(vap)] (4.14) 

because E'" H for liquid water and ice. Including the 
zero point Vibrational energy gives the results shown in 
Table IV. 

Our computed E theor = 23. 6 kJ mol- l and experimentally 
derived E expt = 21. 5 kJ mor l total energies as shown in 
Tables II and IV thus agree quite well, perhaps better 
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TABLE IV. Experimental total energy (kJmor1). 

H300K(liq) -HOK (ice) 

HOK (ice) -HOK(vap) 

Vibrational zero point energy 

13.4a 

-47.36b 

55.45b 

21.5 

"N. Dorsey, Properties of Ordinary Water Substance 
(Hafner, New York, 1968). 

1>0. Eisenberg and W. Kuazman, The Structure and 
Properties of Water (Oxford University, New York, 
1969). 

than expected in light of the possible improvements dis­
cussed in Sec. V below. 

F. Heat capacity 

The energy is fixed in a microcanonical ensemble 
while the temperature as computed from Eq. (2.6) 
fluctuates about an average value. Seven distinct water 
configurations with different energies are created, and 
the average temperature for each sample is calculated 
over at least 10 ps of running time. The seven pOints 
are plotted on the energy-temperature graph in Fig. 7. 
A straight line is fitted to the pOints, and the slope is 
calculated, giving the constant volume heat capacity. 
The results seen in Table V srow quite good agreement 
with experiment once the quantum correction is added. 
Note that the calculated value would disagree sub­
stantially with experiment if the 11.0 J deg""l mor1 in­
termolecular quantum correction for hindered rotational 
and translational motion had been omitted. 

V. DISCUSSION AND CONCLUSION 

The calculations for liquid water presented here are 
designed to illustrate the quantum correction of clas­
sical thermodynamic quantities and not to provide the 
ultimate in accuracy for those thermodynamic values. 
Even though the results agree well with experiment, 
Etheor = 23. 6 vs Eexpt = 21. 5 kJ mol-I, and C~heor = 71. 7 
vs C:xpt = 74. 5 J deg-1 mol-I, it is clear that these classi­
cal calculations could be improved. For example, it 
can be argued that no potential function yet exists for 
water which is adequate to represent both the inter- and 
intramolecular motions or which is even valid in an ef­
fective sense for all phases. 57,96 The WATTS potential 
function which we use in this example calculation is no 
exception, having been criticized75 on the ground that 
radial distribution functions calculated from it do not 
agree with experiment. It is unlikely, as we've seen, 
to properly account for the change in vibrational fre­
quencies9,36,1l3-J16 on going from the gas to the liquid 
phase, as there is no direct coupling between inter­
mOlecular distances and the intramolecular part of the 
potential. The reader is referred to the recent paper by 
Reimers, Watts, and Kleins7 for a comparison among 
various existing water potentials and a presentation of 
a revised WATTS potential. The potential we have used 
is clearly only an effective34,117 molecule-molecule po­
tential, as it omits three34,60,6I,77,80,118-121 (and higher) 

molecule effects which surely must exist. In addition, 
one could make a more accurate calculation by in­
cluding a correction6,15,36 for the tails of the potential 
beyond the O. 85-0. 90 nm region at which we feathered 
the potential to zero or one could try other long range 
correction techniques such as Ewald sumS. 122 It seems 
clear from the large variations in energy among dif­
ferent choices of boundary treatment that much more 
needs to be learned about the effects of different bound­
ary treatments on systems with long range potentials 
and their convergence to experimental values. Related 
questions have been raised by Pangali, Rao, and Berne90 

with respect to Monte Carlo calculations. The methodol­
ogy of quantum correction illustrated here would work 
equally well with any or all of the improvements men­
tioned above to the classical part of the calculations. 

A substantial amount of calculation is needed to 
achieve the accuracy illustrated in Fig. 7. The long 
simulation time to achieve a stable average can be in­
terpreted in terms of the unusual "stickiness" of 
liquid water. 62,89 The 95 ps of total molecular simula­
tion time illustrated in Fig. 7 required 190 h of real 
time on an array processor. 99,100 The array processor 
speed is approximately 35 times lOO that achieved in 
optimized Fortran on a DEC VAX 11/780 with a floating 
point accelerator. and iudging from previously re­
ported figures, 89 5-10 times faster than a rigid water 
calculation on an IBM 360/91. Our 2000 time steps/h 
when scaled for number of particles and cutoff radius 
is roughly comparable to the speed reported by Rapa­
port and Scheraga8S,102 for their array processor molecu­
lar dynamics calculation for rigid water, taking into 
account that they use a predictor-corrector integrator, 
while we only use one force evaluation per time step. 

A very different way to compute dynamics and thermo­
dynamic quantities which may in time become practical 
would be a quantum force classical trajectory ap­
proachl23 in which at each time step in the classical tra­
jectory the forces (for the dynamics) and the energy (for 
the thermodynamics) are computed from ab initio quan­
tum mechanics. 

It is clear from these results that one can and should 
take into account quantum corrections in testing molecu­
lar potential functions against experimental thermo­
dynamic measurements. In particular, the inter­
molecular (hindered translational and rotational) mo­
tions in strongly associated liquids can lead to signifi-

TABLE V. Constant volume heat 
capacity (J deg-1 mol-I). 

C ~heor =C~ +C~ 

C~~ptI 

106.5 

-34.8 

71.7 

74.5a 

aD. Eisenberg and W. Kauz man , 
The Stmcture and Properties of 
Water (Oxford University, New York, 
1969). 
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cant errors if the related quantum corrections are ne­
glected in thermodynamic comparisons with experi­
ment. Consider, e. g., that the intermolecular quantum 
correction to energy for our system is 38% of the kine­
tic energy while the intermolecular quantum correction 
to free energy is 20% of the kinetic energy. The inter­
molecular quantum correction to heat capacity is 15% 
of the experimental value while the intermolecular quan­
tum correction for entropy is 10% of the experimental 
value. 101 Similarly, motions in polymers (which can 
themselves be affected by solvent interactions) may also 
need thermodynamic quantum correction, and the mo­
lecular dynamics method illustrated here also can be 
applied in such cases. 

An interesting aspect of this quantum correction tech­
nique is that after the dynamics (which in general depend 
upon all the atoms) are computed, the quantum correc­
tions may be calculated atom by atom, and thus the 
quantum effects on the thermo(l.ynamic variables may be 
considered separately for different elements, different 
chemical environments of the same element, different 
types of molecules, or molecules in different environ .. 
ments. An advantage of the basically classical molecular 
dynamics approach to thermodynamics presented here is 
the ability to visualize and understand intuitively the 
classical motions and frequencies responsible for ther­
modynamic effects. For example, one can understand 
in a very pictorial way the dominance of the water quan­
tum corrections by the hydrogen atom motions as il­
lustrated in Figs. 3-6. 

This technique for quantum correcting classical 
thermodynamic quantities should be applicable to a wide 
variety of molecular systems including polymers such 
as proteins and nucleic acids, liquids, solutions, and 
solids. For example, the molecular dynamics method 
could be used to compute and quantum correct the heat 
capacity of biomolecules in solution, a quantity known 
to depend on molecular conformation. Thermodynamic 
calculations can be made involving both intermolecular 
and intramolecular degrees of freedom. In addition, 
this approach can be extended to treat quasi equilibrium 
cases, such as the calculation of thermodynamic quanti­
ties as a function of progress along a chemical reaction 
coordinate or thermodynamic quantities for molecules 
in special surroundings such as boundary waters near 
a protein. 
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